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Girraween High School

2016

EXAMINATION

Mathematics

General Instructions
e Reading time — 5 minutes
»  Working time — 3 hours
e Write using a black or blue pen

o Board - approved calculators may be used

¢ A laminated reference sheet is provided

¢ Answer multiple choice questions on the
front page

e In questions I1 — 16 start all questions on
a separate page and show all relevant
mathematical reasoning and/or calcula-
tions '

TRIAL HIGHER SCHOOL CERTIFICATE

Total Marks — 100

Section 1
10 marks
e Attempt 1 —10
e Allow about 15 minutes for this section

Pages5-8

Section I1
30 marks
o Attempt 11 - 16
e Allow about 2 hours and 45 minutes for
this section

Pages 9 - 18
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Section I

10 marks

Attempt questions 1 — 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 — 10.

1 Find is the value of log,2016 to three significant figures.

(A) 7.61
(B) 7.60
(C) 7.608
(D) 7.609
2 The graph below shows the maximum stationary point 4 on the curve y = f(x).
Y
y =1(x)
A

/

Which of the following is true at point 4?
(A)f'(x) > 0and f'(x) = 0
B) f'(x) <O0and f(x) = 0
©F'(x)=0and f"(x) >0

DYf'x)=0and f"(x) <0
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3

The equation 2x% — 5x — 1 = 0 has roots « and .

What is the value of i— + -;—?
1
(A) —<
(B) 5
(C) -5

D) 3

The coordinates of the focus of the parabola x? = 8(y ~ 3) are:

(A) (0,5
B) (0,1)
© .0
D) (1,0)

fx=a(b- i—) then

Ay ==

B) y=——
C)y=—=—
D) y=3-b
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6 Which would give the value of the shaded area?

Y

y=i{x)

(A, Fedx + | [} FG0dz|
(B) J2, FGdx + | [} £ Cdx]
© |17 Fydx| + £ FGodx

O)|f2, Fedd| + [} FOydx
7 The solutions to V2sinx = —1for 0 < x < 27 are:

3 5T
(&) and =
37 77T
®) md
St 71T
© Fand?

D) Z;’E and 2
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8 The solution to the inequality 6 — x — x2 < 0 is:
(A) 3<x<2
(B) x<—=3o0rx=>2
O x<~-2Zorx >3

(D)-2<x<3

9 The graph of y = 3x2? — kx + 2 is symmetrical about the line x = %
The lowest possible value of y is:

(A)

RNy

(B)

NP

©

D) 2

10 What is the perpendicular distance between the lines y = 4x + 3 and y = 4x -+ 5?
2
(A) =
3
(B) =
2
© 2

(D) 2

End of Section I
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Section II

90 marks

Attempt questions 11 - 16

Allow about 2 hours 45 minutes for this section

Answer each section on a new page

In questions 11 — 16, your responses should include relevant mathematical reasoning and/or
calculations. '

Question 11 (15 marks) Start a new page.

a) Simplify fully 3x — (4 — 3x).
b) Factorise x3+8
¢} Solve |2——5x[ <7

d) Whrite % in the form @ + b5, where a and b are rational.

¢) The side lengths of the triangle below are in millimetres.

A0
// \
// ‘\
. // \
7 \ .
s \ Not to scale
- 4
/ Ie] \\
e 5_62 \
‘-"-m.__.___‘.‘- — 7 50 ‘\.\
595 T

Find the value of x to the nearest whole number.

Question 11 continues on the next page
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Question 11 continued

f) The points A(8, —3)and B(5,4) are shown in the diagram below. The line through 4B makes an
angle of & with the positive x — axis and the point C lies on the x — axis.

Diagram not {o scale

o,

A
(i) Find the gradient of the line 45. 1
(i)  Find the value of @ to the nearest degree. 1
(iii)  Find the coordinates of C given that AB L BC. 2
(iv)  Find coordinates of M, the midpoint of 4B. 1
(v) Find the equation of the line 4B in general form. 2

End of question 11
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Question 12 (15 marks) Start a new page.

a} Find the gradient of the normal at the point (2, —2) on the curve y = x* — Sx. 2

b) Differentiate with respect to x.

i)  xlog.(3x*—-1) 2
(i) (e—zx + 1)10 2
Sx

(111) sin2x 2

c) The graph below shows the curve y = 2x® — 3x2 + 4. The point 4 is a point of inflexion.

y=2~ 3"+ 4

S

1) Find the coordinates of 4. 2

(i1) When is the curve concave up? 1

d) The number of bacteria (B) in a sample grows exponentially with time according to the equation
B = 200e*t, where k is a constant and ¢ is measured in hours.

(1) In two days (48 hours) the number of bacteria in the sample is now 7653.
Calculate the value of k to three decimal places. 2

(i)  Find, correct to the nearest hour, when there will be one million bacteria in the
sample. 2

End of question 12

Garaween High School Mathematics Trial HSC 2016 ' Page 11




Question 13 (15 marks) Start a new page.

4

a) The point (-2, 3) lies on the curve with a gradient function of % =—

Find the equation of the curve.

b) Find the following integrals.
iy [ (6cos3x — 2sin -';5) dx
G) f g dx

e3

Giiy  J (1 - 6sec? g)dx

c) The graph below shows the curve y = log,x.

y= In(x)

Use Simpson’s Rule with five (5) function values to approximate fls log.x dx. Give your

answer to three (3) significant figures.

Question 13 continues on the next page
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Question 13 continued

d) The graph below shows the area enclosed by the parabola y = x — 2x2 and the line
x +y = 0. The parabola and the line intersect at the origin and point A.

Not to scale

Ty

(1) Find the coordinates of point 4.

(i1}  Find the value of the shaded area.

End of question 13
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Question 14 (15 marks) Start a new page.

a) An arithmetic sequence begins with the three terms -6,1,8.
(i) Find the 200" term of the sequence. 2
(ii)  Find the sum of 200 terms of the sequence. 2
b) A geometric sequence begins with the three terms —4,8,~16.
Find the 75" term of the progression. 2

¢) The numbers p, g and » add to 9 and form an arithmetic progression. The numbers 7;, p and g
form a geometric progression. Find the values of p, g and r. 3

d) Onthe /* January each year Simone invests $M annually into a superannuation account. The
account gives interest at a rate of 5% per annum, compounded annually.

(i) Show that the value of her investment at the end of 2 years was
Ay = 2.1525M dollars. 2

(i1) Show that the value of her investment at the end of n years was
A, = 21(1.05™ — 1)M dollars. 2

(111)  Simone wants to retire after 30 years with a million dollars in her superannuation
account. Find the amount that she must invest into her account on the /* January
each year to reach her goal. Answer to the nearest cent. 2

End of question 14
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Question 15 (15 marks) Start a new page.

a) The region bounded by the curve y = ﬁ , the line x = —1 and the axes is shown below.

\ ¥

e

L,
s T 4

S it TS ES e

g Yk, Y %42
i /f > B,

. et T, ; o -

e '?/,/;;///// //?.-'.ry::///.’-;" 7 ///f/;‘:::;//////,;’

g O ity P

iy, /f' ,/,;,///’/”_’// “ _///,o,{.;,////’/’////x/,,/; /j”’//

(e e, o i o i, /ﬂ,,/”/

s iy i s, //.r/// . ,////////, o

Iy i i v

i T g, X
=) D 1

The region is rotated about the x — axis to form a solid.
Find the volume of this solid.

b) The diagram below shows square CDEF and rhombus ABDC.
The diagonal of the thombus AD and the segment BE intersect at point G.

/
t'/
/
C L 3]
o[>
/_/ ifi
" /
/ /
-~ ]’if
A 4:
(1) Given that < ADB = 8, explain why < CDA = 8, giving reasons 1
(i)  Find < BED in terms of 8, giving reasons. 2
(iit)  Hence show that < DGE = %, giving reasons. 2

Question 15 continues on the next page
Page 15
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¢) In alarge country town, it is known that 55% of the population is male and 45% of the
population is female. Three people in the town are surveyed at random. Find to the nearest
percent, the probability that two are male and one is female. 2

d) Albert plays a game where he throws two standard six-sided dice and the total of the faces
showing is noted. Albert wins the game if an 8 is thrown and he loses if a 5 is thrown. If the
sum is any other number, the game continues until an & is thrown or a 5 is obtained.

(i) Show that the probability that Albert wins on the first throw is % .

1
(ii) Show that the probability that Albert wins on either the first, second or third
throw is —2, 2
576
(iii) ~ What is the probability that Albert wins the game? 2

End of question 15
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Question 16 (15 marks) Start a new page.

-a) Two particles P and Q which are initially at the origin are moving along a straight line.
Their displacements, x kilometres, from the origin at any time, ¢ hours, are given by the
rules:

P: x =5t - 2¢t2.
Q: x = 8t% + 2t.

(1) After what time are they travelling with the same velocity? 2

(i)  Both particles are together again at point 4. Find the distance of point 4 from the
origin. 2

(iil)  Athird particle R, travelling with constant speed, is 3 kilometres ahead of P and
Q when they pass the origin. If particle R arrives at point 4 at the same time as
particles P and @, find a rule connecting x and ¢ for this particle. 2

b} Triangle ABD has side lengths of 4D = 7 units, DB = x units and 45 = § units.

C is the midpoint of 4B. The median CD equals the length of the base 45.

Not to scale

(i) Use the cosine rule in triangle 4DC to show that cos < DAB = -;—% 1

(ii)  Hence find the exact value of x. 2
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¢} The shape ABCD consists of a sector ABC of radius r and angle ¢ and semicircle ACD with
centre O and radius -?2:

(i) If the area (4) of this shape is a fixed value, show that the perimeter

_ (meny, 2
P = 4)r+7_. 3

(ii)  Show that perimeter P is a minimum when 8 = 1. 3

End of examination
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